enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Signal-flow graph - Wikipedia

    en.wikipedia.org/wiki/Signal-flow_graph

    A signal-flow graph or signal-flowgraph (SFG), invented by Claude Shannon, [1] but often called a Mason graph after Samuel Jefferson Mason who coined the term, [2] is a specialized flow graph, a directed graph in which nodes represent system variables, and branches (edges, arcs, or arrows) represent functional connections between pairs of nodes.

  3. Mason's gain formula - Wikipedia

    en.wikipedia.org/wiki/Mason's_gain_formula

    Mason's Rule is also particularly useful for deriving the z-domain transfer function of discrete networks that have inner feedback loops embedded within outer feedback loops (nested loops). If the discrete network can be drawn as a signal flow graph, then the application of Mason's Rule will give that network's z-domain H(z) transfer function.

  4. Flow graph (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Flow_graph_(mathematics)

    An example of a signal-flow graph Flow graph for three simultaneous equations. The edges incident on each node are colored differently just for emphasis. An example of a flow graph connected to some starting equations is presented. The set of equations should be consistent and linearly independent. An example of such a set is: [2]

  5. Minor loop feedback - Wikipedia

    en.wikipedia.org/wiki/Minor_loop_feedback

    Angular position servo and signal flow graph. θ C = desired angle command, θ L = actual load angle, K P = position loop gain, V ωC = velocity command, V ωM = motor velocity sense voltage, K V = velocity loop gain, V IC = current command, V IM = current sense voltage, K C = current loop gain, V A = power amplifier output voltage, L M = motor inductance, I M = motor current, R M = motor ...

  6. Butterfly diagram - Wikipedia

    en.wikipedia.org/wiki/Butterfly_diagram

    Signal-flow graph connecting the inputs x (left) to the outputs y that depend on them (right) for a "butterfly" step of a radix-2 Cooley–Tukey FFT. This diagram resembles a butterfly (as in the morpho butterfly shown for comparison), hence the name, although in some countries it is also called the hourglass diagram.

  7. Blackman's theorem - Wikipedia

    en.wikipedia.org/wiki/Blackman's_theorem

    Blackman's theorem is a general procedure for calculating the change in an impedance due to feedback in a circuit. It was published by Ralph Beebe Blackman in 1943, [1] was connected to signal-flow analysis by John Choma, and was made popular in the extra element theorem by R. D. Middlebrook and the asymptotic gain model of Solomon Rosenstark.

  8. Noncommutative signal-flow graph - Wikipedia

    en.wikipedia.org/wiki/Noncommutative_signal-flow...

    A multi-input, multi-output system represented as a noncommutative matrix signal-flow graph. In automata theory and control theory, branches of mathematics, theoretical computer science and systems engineering, a noncommutative signal-flow graph is a tool for modeling [1] interconnected systems and state machines by mapping the edges of a directed graph to a ring or semiring.

  9. Closed-loop transfer function - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_transfer_function

    The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below: