Search results
Results from the WOW.Com Content Network
If the energy–momentum tensor T μν is zero in the region under consideration, then the field equations are also referred to as the vacuum field equations. By setting T μν = 0 in the trace-reversed field equations, the vacuum field equations, also known as 'Einstein vacuum equations' (EVE), can be written as =.
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
The equation for universal gravitation thus takes the form: =, where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant.
Vacuum became a valuable industrial tool in the 20th century with the introduction of incandescent light bulbs and vacuum tubes, and a wide array of vacuum technologies has since become available. The development of human spaceflight has raised interest in the impact of vacuum on human health, and on life forms in general.
When T μν is zero, the field equation describes empty space (a vacuum). The cosmological constant has the same effect as an intrinsic energy density of the vacuum, ρ vac (and an associated pressure). In this context, it is commonly moved to the right-hand side of the equation using Λ = κρ vac. It is common to quote values of energy ...
The field strength of vacuum energy is a concept proposed in a theoretical study that explores the nature of the vacuum and its relationship to gravitational interactions. The study derived a mathematical framework that uses the field strength of vacuum energy as an indicator of the bulk (spacetime) resistance to localized curvature.
However, even the vacuum has a vastly complex structure, so all calculations of quantum field theory must be made in relation to this model of the vacuum. The vacuum has, implicitly, all of the properties that a particle may have: spin, [21] or polarization in the case of light, energy, and so on. On average, most of these properties cancel out ...
All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the bodies; [1] the measurement and analysis of these rates is known as gravimetry. At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation .