Search results
Results from the WOW.Com Content Network
For example, (C 6 H 5)(CH 3) 2 C + is referred to as a "benzylic" carbocation. The benzyl free radical has the formula C 6 H 5 CH 2 •. The benzyl cation or phenylcarbenium ion is the carbocation with formula C 6 H 5 CH + 2; the benzyl anion or phenylmethanide ion is the carbanion with the formula C 6 H 5 CH − 2.
Due to the high chemical stability of ethers, the cleavage of the C-O bond is uncommon in the absence of specialized reagents or under extreme conditions. [1] [2] In organic chemistry, ether cleavage is an acid catalyzed nucleophilic substitution reaction. Depending on the specific ether, cleavage can follow either S N 1 or S N 2 mechanisms.
Benzylic cations of chromium arene complexes are conformationally stable, and undergo only exo attack to afford S N 1 products stereospecifically, with retention of configuration. [1] Propargyl [ 1 ] and oxonium [ 1 ] cations undergo retentive substitution reactions, and even β carbocations react with a significant degree of retention.
A carbocation may be stabilized by resonance by a carbon–carbon double bond or by the lone pair of a heteroatom adjacent to the ionized carbon. The allyl cation CH 2 =CH−CH + 2 and benzyl cation C 6 H 5 −CH + 2 are more stable than most other carbenium ions due to donation of electron density from π systems to the cationic center. [20]
The driving force for this rearrangement step is believed to be the relative stability of the resultant oxonium ion. Although the initial carbocation is already tertiary, the oxygen can stabilize the positive charge much more favorably due to the complete octet configuration at all centers.
In S N 1, allylic and benzylic carbocations are stabilized by delocalizing the positive charge. In S N 2, however, the conjugation between the reaction centre and the adjacent pi system stabilizes the transition state. Because they destabilize the positive charge in the carbocation intermediate, electron-withdrawing groups favor the S N 2
Here, a strong Lewis acid is required to generate either a carbocation from an alkyl halide in the Friedel-Crafts alkylation reaction or an acylium ion from an acyl halide. In the vast majority of cases, reactions that involve leaving group activation generate a cation in a separate step, before either nucleophilic attack or elimination.
Jannik Bjerrum (son of Niels Bjerrum) developed the first general method for the determination of stability constants of metal-ammine complexes in 1941. [1] The reasons why this occurred at such a late date, nearly 50 years after Alfred Werner had proposed the correct structures for coordination complexes, have been summarised by Beck and Nagypál. [2]