Search results
Results from the WOW.Com Content Network
In computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement . Unlike other for loop constructs, however, foreach loops [ 1 ] usually maintain no explicit counter: they essentially say "do this to everything in this ...
If the condition is true, then the lines of code inside the loop are executed. The advancement to the next iteration part is performed exactly once every time the loop ends. The loop is then repeated if the condition evaluates to true. Here is an example of the C-style traditional for-loop in Java.
LOOP is a simple register language that precisely captures the primitive recursive functions. [1] The language is derived from the counter-machine model. Like the counter machines the LOOP language comprises a set of one or more unbounded registers, each of which can hold a single non-negative integer. A few arithmetic instructions (like 'CleaR ...
C's for loop is a very poor example and should not be given pride of place.Control structures should be semantic, yet C's for loop is a level below that where the programmer must increment the control variable. Here is a further explanation. The for loop takes a range variable and loops on that range.
Python supports conditional execution of code depending on whether a loop was exited early (with a break statement) or not by using an else-clause with the loop. For example, For example, for n in set_of_numbers : if isprime ( n ): print ( "Set contains a prime number" ) break else : print ( "Set did not contain any prime numbers" )
This is an accepted version of this page This is the latest accepted revision, reviewed on 17 January 2025. General-purpose programming language "C programming language" redirects here. For the book, see The C Programming Language. Not to be confused with C++ or C#. C Logotype used on the cover of the first edition of The C Programming Language Paradigm Multi-paradigm: imperative (procedural ...
For example, let us multiply matrices A, B and C. Let us assume that their dimensions are m×n, n×p, and p×s, respectively. Matrix A×B×C will be of size m×s and can be calculated in two ways shown below: Ax(B×C) This order of matrix multiplication will require nps + mns scalar multiplications.
Loop interchange on this example can improve the cache performance of accessing b(j,i), but it will ruin the reuse of a(i) and c(i) in the inner loop, as it introduces two extra loads (for a(i) and for c(i)) and one extra store (for a(i)) during each iteration. As a result, the overall performance may be degraded after loop interchange.