Search results
Results from the WOW.Com Content Network
Aromatic amino acids, excepting histidine, absorb ultraviolet light above and beyond 250 nm and will fluoresce under these conditions. This characteristic is used in quantitative analysis, notably in determining the concentrations of these amino acids in solution. [1] [2] Most proteins absorb at 280 nm due to the presence of tyrosine and ...
Edman degradation, developed by Pehr Edman, is a method of sequencing amino acids in a peptide. [1] In this method, the amino-terminal residue is labeled and cleaved from the peptide without disrupting the peptide bonds between other amino acid residues.
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
At room temperature, thiophene is a colorless liquid with a mildly pleasant odor reminiscent of benzene, [citation needed] with which thiophene shares some similarities. The high reactivity of thiophene toward sulfonation is the basis for the separation of thiophene from benzene, which are difficult to separate by distillation due to their ...
Sulfides, formerly known as thioethers, are characterized by C−S−C bonds [3] [4] Relative to C−C bonds, C−S bonds are both longer, because sulfur atoms are larger than carbon atoms, and about 10% weaker. Representative bond lengths in sulfur compounds are 183 pm for the S−C single bond in methanethiol and 173 pm in thiophene.
Peptide bond formation via dehydration reaction. When two amino acids form a dipeptide through a peptide bond, [1] it is a type of condensation reaction. [2] In this kind of condensation, two amino acids approach each other, with the non-side chain (C1) carboxylic acid moiety of one coming near the non-side chain (N2) amino moiety of the other.
Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers – specifically polypeptides – formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a
The chains are held together by hydrogen bonding between the hydrogen and oxygen atoms of different by nearby amide (peptide) links formed as the amino acids condense to form the polypeptide chain. These form helical arrangements that cannot be uncoiled without breaking the hydrogen bonds. Those structures in which all available NH and CO ...