Search results
Results from the WOW.Com Content Network
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological ...
This portion of the Éléments was gradually realized as its first three books, dealing with set theory, abstract algebra, and general topology. [5] [19] Today, the Éléments divide into two parts. Bourbaki structured the first part of the work into six sequentially numbered books: I. Theory of Sets, II. Algebra, III. General Topology, IV.
His research interests lay in the area of algebra, involving abelian groups, modules, homological algebra, and combinatorics. [5] Rotman was the Managing Editor of the Proceedings of the American Mathematical Society in 1972–1973. [4] In 1985 he was the Annual Visiting Lecturer of the South African Mathematical Society. [6]
The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size. The books in this series tend to be written at a more elementary level than the similar Graduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and ...
Algebraic topology is a branch of mathematics in which tools from abstract algebra are used to study topological spaces The main article for this category is Algebraic topology . Contents
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.
In mathematics, combinatorial topology was an older name for algebraic topology, dating from the time when topological invariants of spaces (for example the Betti numbers) were regarded as derived from combinatorial decompositions of spaces, such as decomposition into simplicial complexes.
In mathematics, topological K-theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early work on topological K-theory is due to Michael Atiyah and Friedrich Hirzebruch.