Search results
Results from the WOW.Com Content Network
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.
low in glycemic index (in which the carbohydrates take longer to digest) - e.g. oats; high in fibre (which takes longer to digest than low fibre foods) - e.g. fruit; low in calories - e.g. vegetables; solid (which takes longer to digest than liquid foods, though liquids have high satiety for a short period) [9]
According to the American Meteorological Society Glossary of Meteorology, saturation vapor pressure properly refers to the equilibrium vapor pressure of water above a flat surface of liquid water or solid ice, and is a function only of temperature and whether the condensed phase is liquid or solid. [17]
“The DASH diet is very similar in concept to the Mediterranean diet but has an emphasis on low sodium intake for heart health, striving for the daily recommended intake of 1500-2300 mg of sodium ...
An important basic value, which is not registered in the table, is the saturated vapor pressure at the triple point of water. The internationally accepted value according to measurements of Guildner, Johnson and Jones (1976) amounts to: P w (t tp = 0.01 °C) = 611.657 Pa ± 0.010 Pa at (1 − α) = 99%
However, its empirical value remains important: the unique combination of pressure and temperature at which liquid water, solid ice, and water vapor coexist in a stable equilibrium is approximately 273.16 ± 0.0001 K [4] and a vapor pressure of 611.657 pascals (6.11657 mbar; 0.00603659 atm).
10 kPa 1.5 psi Pressure increase per meter of a water column [26]: 10 kPa 1.5 psi Decrease in air pressure when going from Earth sea level to 1000 m elevation [citation needed]
The bulk modulus of water is about 2.2 GPa. [43] The low compressibility of non-gasses, and of water in particular, leads to their often being assumed as incompressible. The low compressibility of water means that even in the deep oceans at 4 km depth, where pressures are 40 MPa, there is only a 1.8% decrease in volume. [43]