Search results
Results from the WOW.Com Content Network
Then is called a pivotal quantity (or simply a pivot). Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.
The pivotal method is based on a random variable that is a function of both the observations and the parameters but whose distribution does not depend on the parameter. Such random variables are called pivotal quantities. By using these, probability statements about the observations and parameters may be made in which the probabilities do not ...
Conversely, given i.i.d. normal variables with known mean 1 and unknown variance σ 2, the sample mean ¯ is not an ancillary statistic of the variance, as the sampling distribution of the sample mean is N(1, σ 2 /n), which does depend on σ 2 – this measure of location (specifically, its standard error) depends on dispersion.
That is, it's the distribution with pdf (;). In this form, it is clear that the Fisher information matrix is a Riemannian metric, and varies correctly under a change of variables. (see section on Reparameterization.)
Pivotal conversion is similarly used in other areas. Office applications, when employed to convert between office file formats, use their internal, default file format as a pivot. For example, a word processor may convert an RTF file to a WordPerfect file by converting the RTF to OpenDocument and then that to WordPerfect format.
Performing a probabilistic risk assessment starts with a set of initiating events that change the state or configuration of the system. [3] An initiating event is an event that starts a reaction, such as the way a spark (initiating event) can start a fire that could lead to other events (intermediate events) such as a tree burning down, and then finally an outcome, for example, the burnt tree ...
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.
In probability theory, the probability integral transform (also known as universality of the uniform) relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. [1]