enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pivotal quantity - Wikipedia

    en.wikipedia.org/wiki/Pivotal_quantity

    Then is called a pivotal quantity (or simply a pivot). Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.

  3. Fiducial inference - Wikipedia

    en.wikipedia.org/wiki/Fiducial_inference

    The pivotal method is based on a random variable that is a function of both the observations and the parameters but whose distribution does not depend on the parameter. Such random variables are called pivotal quantities. By using these, probability statements about the observations and parameters may be made in which the probabilities do not ...

  4. Ancillary statistic - Wikipedia

    en.wikipedia.org/wiki/Ancillary_statistic

    Conversely, given i.i.d. normal variables with known mean 1 and unknown variance σ 2, the sample mean ¯ is not an ancillary statistic of the variance, as the sampling distribution of the sample mean is N(1, σ 2 /n), which does depend on σ 2 – this measure of location (specifically, its standard error) depends on dispersion.

  5. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    That is, it's the distribution with pdf (;). In this form, it is clear that the Fisher information matrix is a Riemannian metric, and varies correctly under a change of variables. (see section on Reparameterization.)

  6. Data conversion - Wikipedia

    en.wikipedia.org/wiki/Data_conversion

    Pivotal conversion is similarly used in other areas. Office applications, when employed to convert between office file formats, use their internal, default file format as a pivot. For example, a word processor may convert an RTF file to a WordPerfect file by converting the RTF to OpenDocument and then that to WordPerfect format.

  7. Event tree analysis - Wikipedia

    en.wikipedia.org/wiki/Event_tree_analysis

    Performing a probabilistic risk assessment starts with a set of initiating events that change the state or configuration of the system. [3] An initiating event is an event that starts a reaction, such as the way a spark (initiating event) can start a fire that could lead to other events (intermediate events) such as a tree burning down, and then finally an outcome, for example, the burnt tree ...

  8. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.

  9. Probability integral transform - Wikipedia

    en.wikipedia.org/wiki/Probability_integral_transform

    In probability theory, the probability integral transform (also known as universality of the uniform) relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. [1]