Search results
Results from the WOW.Com Content Network
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
The baseline Coefficient of Discharge values should be within the 95% confidence interval for the RG orifice equation (i.e. the coefficient of discharge equation as provided by AGA-3). Select values of upstream meter tube length, and flow conditioner location, to be used for the performance evaluation.
c = discharge coefficient (unitless). This is usually 1.0 if using a diffuser. If using a wand to measure the stagnation pressure, the coefficient value depends on the shape of the flow hydrant orifice. A smooth and rounded outlet has c=0.9, a square and sharp outlet has c=0.8, and a square outlet which projects into the barrel has c=0.7.
The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as
Orifice plate showing vena contracta. An orifice plate is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice [1] but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases.
In other words, the smaller the orifice is (compared to the pipe) the less of an influence it has on the gas flow!--12.176.38.188 23:26, 27 January 2012 (UTC) Note that the flow is based on A2, which gets smaller as d2 gets smaller. At small values of d2, the available flow area is much more important than the ratio of the diameters.
For low viscosity liquids (such as water) flowing out of a round hole in a tank, the discharge coefficient is in the order of 0.65. [4] By discharging through a round tube or hose, the coefficient of discharge can be increased to over 0.9. For rectangular openings, the discharge coefficient can be up to 0.67, depending on the height-width ratio.
The coefficient of contraction is defined as the ratio between the area of the jet at the vena contracta and the area of the orifice. C c = Area at vena contracta/Area of orifice. The typical value may be taken as 0.611 for a sharp orifice (concentric with the flow channel). [2] [3] The smaller the value, the greater the effect the vena ...