enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polite number - Wikipedia

    en.wikipedia.org/wiki/Polite_number

    In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite . [ 1 ] [ 2 ] The impolite numbers are exactly the powers of two , and the polite numbers are the natural numbers that are not powers of two.

  3. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number ⁠ π 2 / 6 ⁠, or ζ(2) where ζ is the Riemann zeta function. The sum of the reciprocals of the cubes of positive integers is called Apéry's constant ζ (3) , and equals approximately 1.2021 .

  4. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...

  5. Pronic number - Wikipedia

    en.wikipedia.org/wiki/Pronic_number

    A pronic number is a number that is the product of two consecutive integers, that is, a number of the form (+). [1] The study of these numbers dates back to Aristotle.They are also called oblong numbers, heteromecic numbers, [2] or rectangular numbers; [3] however, the term "rectangular number" has also been applied to the composite numbers.

  6. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    −43 = F −2 + F −7 + F −10 = (−1) + 13 + (−55) 0 is represented by the empty sum. 0 = F −1 + F −2 , for example, so the uniqueness of the representation does depend on the condition that no two consecutive negafibonacci numbers are used. This gives a system of coding integers, similar to the representation of Zeckendorf's theorem.

  7. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...

  8. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Computation of the sum 2 + 5 + 8 + 11 + 14. When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers (2 + 14 = 16). Thus 16 × 5 = 80 is twice the sum.

  9. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    The Goldbach conjecture for practical numbers, a prime-like sequence of integers, was stated by Margenstern in 1984, [33] and proved by Melfi in 1996: [34] every even number is a sum of two practical numbers.