Search results
Results from the WOW.Com Content Network
In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite . [ 1 ] [ 2 ] The impolite numbers are exactly the powers of two , and the polite numbers are the natural numbers that are not powers of two.
The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number π 2 / 6 , or ζ(2) where ζ is the Riemann zeta function. The sum of the reciprocals of the cubes of positive integers is called Apéry's constant ζ (3) , and equals approximately 1.2021 .
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
A pronic number is a number that is the product of two consecutive integers, that is, a number of the form (+). [1] The study of these numbers dates back to Aristotle.They are also called oblong numbers, heteromecic numbers, [2] or rectangular numbers; [3] however, the term "rectangular number" has also been applied to the composite numbers.
−43 = F −2 + F −7 + F −10 = (−1) + 13 + (−55) 0 is represented by the empty sum. 0 = F −1 + F −2 , for example, so the uniqueness of the representation does depend on the condition that no two consecutive negafibonacci numbers are used. This gives a system of coding integers, similar to the representation of Zeckendorf's theorem.
The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...
Computation of the sum 2 + 5 + 8 + 11 + 14. When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers (2 + 14 = 16). Thus 16 × 5 = 80 is twice the sum.
The Goldbach conjecture for practical numbers, a prime-like sequence of integers, was stated by Margenstern in 1984, [33] and proved by Melfi in 1996: [34] every even number is a sum of two practical numbers.