Search results
Results from the WOW.Com Content Network
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation. In order to be concrete, this article focuses on heat flow, an important example where the convection–diffusion equation applies. However, the same mathematical analysis works equally well to ...
Forced convection: when a fluid is forced to flow over the surface by an internal source such as fans, by stirring, and pumps, creating an artificially induced convection current. [3] In many real-life applications (e.g. heat losses at solar central receivers or cooling of photovoltaic panels), natural and forced convection occur at the same ...
The time at which a filament reaches the Batchelor scale is therefore called its mixing time. The resolution of the advection–diffusion equation shows that after the mixing time of a filament, the decrease of the concentration fluctuation due to diffusion is exponential, resulting in fast homogenization with the surrounding fluid.
Convection is usually the dominant form of heat transfer in liquids and gases. Although sometimes discussed as a third method of heat transfer, convection is usually used to describe the combined effects of heat conduction within the fluid (diffusion) and heat transference by bulk fluid flow streaming. [11]
There are some notable similarities in equations for momentum, energy, and mass transfer [7] which can all be transported by diffusion, as illustrated by the following examples: Mass: the spreading and dissipation of odors in air is an example of mass diffusion. Energy: the conduction of heat in a solid material is an example of heat diffusion.
The methods used for solving two dimensional Diffusion problems are similar to those used for one dimensional problems. The general equation for steady diffusion can be easily derived from the general transport equation for property Φ by deleting transient and convective terms [1]
Solution of equation: 1. For solving the one- dimensional convection- diffusion problem we have to express equation (8) at all the grid nodes. 2. Now obtained set of algebraic equations is then solved to obtain the distribution of the transported property .