enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    a: template, b: leading strand, c: lagging strand, d: replication fork, e: primer, f: Okazaki fragments Many enzymes are involved in the DNA replication fork. The replication fork is a structure that forms within the long helical DNA during DNA replication.

  3. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    The discontinuous stretches of DNA replication products on the lagging strand are known as Okazaki fragments and are about 100 to 200 bases in length at eukaryotic replication forks. The lagging strand usually contains longer stretches of single-stranded DNA that is coated with single-stranded binding proteins, which help stabilize the single ...

  4. GC skew - Wikipedia

    en.wikipedia.org/wiki/GC_skew

    This asymmetry is due to the formation of the replication fork and its division into nascent leading and lagging strands. The leading strand is synthesized continuously and in juxtapose to the leading strand; the lagging strand is replicated through short fragments of polynucleotide (Okazaki fragments) in a 5' to 3' direction. [6]

  5. Primer (molecular biology) - Wikipedia

    en.wikipedia.org/wiki/Primer_(molecular_biology)

    In eukaryotes the removal of RNA primers in the lagging strand is essential for the completion of replication. Thus, as the lagging strand being synthesized by DNA polymerase δ in 5′→3′ direction, Okazaki fragments are formed, which are discontinuous strands of DNA. Then, when the DNA polymerase reaches to the 5’ end of the RNA primer ...

  6. Replisome - Wikipedia

    en.wikipedia.org/wiki/Replisome

    DNA is a duplex formed by two anti-parallel strands. Following Meselson-Stahl, the process of DNA replication is semi-conservative, whereby during replication the original DNA duplex is separated into two daughter strands (referred to as the leading and lagging strand templates). Each daughter strand becomes part of a new DNA duplex.

  7. Okazaki fragments - Wikipedia

    en.wikipedia.org/wiki/Okazaki_fragments

    The leading strand is continuously synthesized and is elongated during this process to expose the template that is used for the lagging strand (Okazaki fragments). During the process of DNA replication, DNA and RNA primers are removed from the lagging strand of DNA to allow Okazaki fragments to bind to.

  8. Primer binding site - Wikipedia

    en.wikipedia.org/wiki/Primer_binding_site

    One of the new strands, the leading strand, moves in the 5' to 3' direction until it reaches the replication fork, allowing DNA polymerase to take the RNA primer and make a new complementary DNA strand to the template strand. The lagging strand moves away from the replication fork in the 3' to 5' direction and consists of small fragments called ...

  9. Rolling circle replication - Wikipedia

    en.wikipedia.org/wiki/Rolling_circle_replication

    DNA polymerase I removes the primer, replacing it with DNA, and DNA ligase joins the ends to make another molecule of double-stranded circular DNA. As a summary, a typical DNA rolling circle replication has five steps: [2] Circular dsDNA will be "nicked". The 3' end is elongated using "unnicked" DNA as leading strand (template); 5' end is ...