enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  3. Truncated normal distribution - Wikipedia

    en.wikipedia.org/wiki/Truncated_normal_distribution

    Implementations can be found in C, C++, Matlab and Python. Sampling from the multivariate truncated normal distribution is considerably more difficult. [11] Exact or perfect simulation is only feasible in the case of truncation of the normal distribution to a polytope region.

  4. Rug plot - Wikipedia

    en.wikipedia.org/wiki/Rug_plot

    A rug plot of 100 data points appears in blue along the x-axis. (The points are sampled from the normal distribution shown in gray. The other curves show various kernel density estimates of the data.) A rug plot is a plot of data for a single quantitative variable, displayed as marks along an axis. It is used to visualise the distribution of ...

  5. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    The goal of density estimation is to take a finite sample of data and to make inferences about the underlying probability density function everywhere, including where no data are observed. In kernel density estimation, the contribution of each data point is smoothed out from a single point into a region of space surrounding it.

  6. Multimodal distribution - Wikipedia

    en.wikipedia.org/wiki/Multimodal_distribution

    Figure 1. A simple bimodal distribution, in this case a mixture of two normal distributions with the same variance but different means. The figure shows the probability density function (p.d.f.), which is an equally-weighted average of the bell-shaped p.d.f.s of the two normal distributions.

  7. Quantile function - Wikipedia

    en.wikipedia.org/wiki/Quantile_function

    The quantile function is one way of prescribing a probability distribution, and it is an alternative to the probability density function (pdf) or probability mass function, the cumulative distribution function (cdf) and the characteristic function.

  8. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    Python: the KernelReg class for mixed data types in the statsmodels.nonparametric sub-package (includes other kernel density related classes), the package kernel_regression as an extension of scikit-learn (inefficient memory-wise, useful only for small datasets) R: the function npreg of the np package can perform kernel regression. [7] [8]

  9. pandas (software) - Wikipedia

    en.wikipedia.org/wiki/Pandas_(software)

    Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series .