enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  3. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    (This is just a consequence of the fact that the inverse of an N×M transpose is an M×N transpose, although it is also easy to show explicitly that P −1 composed with P gives the identity.) As proved by Cate & Twigg (1977), the number of fixed points (cycles of length 1) of the permutation is precisely 1 + gcd( N −1, M −1) , where gcd is ...

  4. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions. In R , function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization.

  5. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]

  6. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    To use column-major order in a row-major environment, or vice versa, for whatever reason, one workaround is to assign non-conventional roles to the indexes (using the first index for the column and the second index for the row), and another is to bypass language syntax by explicitly computing positions in a one-dimensional array.

  7. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  8. Permutation matrix - Wikipedia

    en.wikipedia.org/wiki/Permutation_matrix

    Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.

  9. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an matrix made up of complex numbers. For an explanation of the notation used here, we begin by representing complex numbers e i θ {\displaystyle e^{i\theta }} as the rotation matrix, that is,