enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    For example, the fourth-order Hilbert matrix has a condition of 15514, while for order 8 it is 2.7 × 10 8. Rank A matrix A {\displaystyle A} has rank r {\displaystyle r} if it has r {\displaystyle r} columns that are linearly independent while the remaining columns are linearly dependent on these.

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    In this example, the eigenvectors are any nonzero scalar multiples of = = [], = = []. If the entries of the matrix A are all real numbers, then the coefficients of the characteristic polynomial will also be real numbers, but the eigenvalues may still have nonzero imaginary parts.

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    If A is Hermitian and full-rank, the basis of eigenvectors may be chosen to be mutually orthogonal. The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0.

  6. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Notation: The index j represents the jth eigenvalue or eigenvector. The index i represents the ith component of an eigenvector. Both i and j go from 1 to n, where the matrix is size n x n. Eigenvectors are normalized. The eigenvalues are ordered in descending order.

  7. Nonlinear eigenproblem - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_eigenproblem

    The number is known as the (nonlinear) eigenvalue, the vector as the (nonlinear) eigenvector, and (,) as the eigenpair. The matrix M ( λ ) {\displaystyle M(\lambda )} is singular at an eigenvalue λ {\displaystyle \lambda } .

  8. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.

  9. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    In linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. [ 1 ] Let V {\displaystyle V} be an n {\displaystyle n} -dimensional vector space and let A {\displaystyle A} be the matrix representation of a linear map from V {\displaystyle V ...