enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riesz–Fischer theorem - Wikipedia

    en.wikipedia.org/wiki/Riesz–Fischer_theorem

    The Riesz–Fischer theorem also applies in a more general setting. Let R be an inner product space consisting of functions (for example, measurable functions on the line, analytic functions in the unit disc; in old literature, sometimes called Euclidean Space), and let {} be an orthonormal system in R (e.g. Fourier basis, Hermite or Laguerre polynomials, etc. – see orthogonal polynomials ...

  3. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    Continuous functions, monotone functions, step functions, semicontinuous functions, Riemann-integrable functions, and functions of bounded variation are all Lebesgue measurable. [2] A function f : X → C {\displaystyle f:X\to \mathbb {C} } is measurable if and only if the real and imaginary parts are measurable.

  4. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().

  5. Locally integrable function - Wikipedia

    en.wikipedia.org/wiki/Locally_integrable_function

    Measure and integration (as the English translation of the title reads) is a definitive monograph on integration and measure theory: the treatment of the limiting behavior of the integral of various kind of sequences of measure-related structures (measurable functions, measurable sets, measures and their combinations) is somewhat conclusive.

  6. Convergence of measures - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_measures

    For (,) a measurable space, a sequence μ n is said to converge setwise to a limit μ if = ()for every set .. Typical arrow notations are and .. For example, as a consequence of the Riemann–Lebesgue lemma, the sequence μ n of measures on the interval [−1, 1] given by μ n (dx) = (1 + sin(nx))dx converges setwise to Lebesgue measure, but it does not converge in total variation.

  7. Vitali convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Vitali_convergence_theorem

    When () <, a set of functions (,,) is uniformly integrable if and only if it is bounded in (,,) and has uniformly absolutely continuous integrals. If, in addition, μ {\displaystyle \mu } is atomless, then the uniform integrability is equivalent to the uniform absolute continuity of integrals.

  8. Riesz–Markov–Kakutani representation theorem - Wikipedia

    en.wikipedia.org/wiki/Riesz–Markov–Kakutani...

    where α(x) is a function of bounded variation on the interval [0, 1], and the integral is a Riemann–Stieltjes integral. Since there is a one-to-one correspondence between Borel regular measures in the interval and functions of bounded variation (that assigns to each function of bounded variation the corresponding Lebesgue–Stieltjes measure ...

  9. Egorov's theorem - Wikipedia

    en.wikipedia.org/wiki/Egorov's_theorem

    In measure theory, an area of mathematics, Egorov's theorem establishes a condition for the uniform convergence of a pointwise convergent sequence of measurable functions.It is also named Severini–Egoroff theorem or Severini–Egorov theorem, after Carlo Severini, an Italian mathematician, and Dmitri Egorov, a Russian mathematician and geometer, who published independent proofs respectively ...