enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic sediments - Wikipedia

    en.wikipedia.org/wiki/Cyclic_sediments

    Ginsburg (1971) suggested that asymmetric, shallowing-upward parasequences could be produced under conditions of steady subsidence and constant eustatic sea level by landward transport of carbonate sediment from subtidal zones, leading to progradation of inter- and supratidal zones. Continuing progradation reduces the size of the productive ...

  3. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    By definition, visible light is the part of the EM spectrum the human eye is the most sensitive to. Visible light (and near-infrared light) is typically absorbed and emitted by electrons in molecules and atoms that move from one energy level to another. This action allows the chemical mechanisms that underlie human vision and plant photosynthesis.

  4. Parasequence - Wikipedia

    en.wikipedia.org/wiki/Parasequence

    [2] [1] Most parasequences show a shallowing upward, [3] which is sometimes also included into the definition. [4] Schematic graphic log showing facies successions in common types of clastic parasequences Schematic graphic log showing facies successions in common types of carbonate parasequences

  5. Absorption (electromagnetic radiation) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(electromagnetic...

    By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]

  6. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.

  7. Photon upconversion - Wikipedia

    en.wikipedia.org/wiki/Photon_upconversion

    Optical fiber that contains infrared light shines with a blue color in the dark. Photon upconversion (UC) is a process in which the sequential absorption of two or more photons leads to the emission of light at shorter wavelength than the excitation wavelength. It is an anti-Stokes type emission. An example is the conversion of infrared light ...

  8. Scintillation (physics) - Wikipedia

    en.wikipedia.org/wiki/Scintillation_(physics)

    In condensed matter physics, scintillation (/ ˈ s ɪ n t ɪ l eɪ ʃ ən / SIN-til-ay-shun) is the physical process where a material, called a scintillator, emits ultraviolet or visible light under excitation from high energy photons (X-rays or gamma rays) or energetic particles (such as electrons, alpha particles, neutrons, or ions).

  9. Quantum optics - Wikipedia

    en.wikipedia.org/wiki/Quantum_optics

    Each particle carries one quantum of energy, equal to hf, where h is the Planck constant and f is the frequency of the light. That energy possessed by a single photon corresponds exactly to the transition between discrete energy levels in an atom (or other system) that emitted the photon; material absorption of a photon is the reverse process.