Search results
Results from the WOW.Com Content Network
A power MOSFET is a specific type of metal–oxide–semiconductor field-effect transistor (MOSFET) designed to handle significant power levels. Compared to the other power semiconductor devices , such as an insulated-gate bipolar transistor (IGBT) or a thyristor , its main advantages are high switching speed and good efficiency at low voltages.
The 2N7000 is an N-channel, enhancement-mode MOSFET used for low-power switching applications. [ 1 ] The 2N7000 is a widely available and popular part, often recommended as useful and common components to have around for hobbyist use.
If the MOSFET is an n-channel or nMOS FET, then the source and drain are n+ regions and the body is a p region. If the MOSFET is a p-channel or pMOS FET, then the source and drain are p+ regions and the body is a n region. The source is so named because it is the source of the charge carriers (electrons for n-channel, holes for p-channel) that ...
In a depletion-mode MOSFET, the device is normally on at zero gate–source voltage. Such devices are used as load "resistors" in logic circuits (in depletion-load NMOS logic, for example). For N-type depletion-load devices, the threshold voltage might be about −3 V, so it could be turned off by pulling the gate 3 V negative (the drain, by ...
The MOSFET is also capable of handling higher power than the JFET. [33] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses. [6] The MOSFET thus became the most common type of transistor in computers, electronics, [34] and communications technology (such as smartphones). [35]
The basic TFET structure is similar to a MOSFET except that the source and drain terminals of a TFET are doped of opposite types (see figure). A common TFET device structure consists of a P-I-N (p-type, intrinsic, n-type) junction, in which the electrostatic potential of the intrinsic region is controlled by a gate terminal.
The most common type of FET amplifier is the MOSFET amplifier, which uses metal–oxide–semiconductor FETs (MOSFETs). The main advantage of a FET used for amplification is that it has very high input impedance and low output impedance .
The low on-resistance property of a MOSFET reduces ohmic losses compared to the diode rectifier (below 32 A in this case), which exhibits a significant voltage drop even at very low current levels. Paralleling two MOSFETs (pink curve) reduces the losses further, whereas paralleling several diodes won't significantly reduce the forward-voltage drop.