Search results
Results from the WOW.Com Content Network
Polarizability increases down on columns of the periodic table. [9] Likewise, larger molecules are generally more polarizable than smaller ones. Water is a very polar molecule, but alkanes and other hydrophobic molecules are more polarizable. Water with its permanent dipole is less likely to change shape due to an external electric field.
where μ is the electric dipole moment of the effectively polarized water molecule (2.35 D for the SPC/E model), μ 0 is the dipole moment of an isolated water molecule (1.85 D from experiment), and α i is an isotropic polarizability constant, with a value of 1.608 × 10 −40 F·m 2. Since the charges in the model are constant, this ...
Water is the chemical substance with chemical formula H 2 O; one molecule of water has two hydrogen atoms covalently bonded to a single oxygen atom. [26] Water is a tasteless, odorless liquid at ambient temperature and pressure. Liquid water has weak absorption bands at wavelengths of around 750 nm which cause it to appear to have a blue color. [4]
Molar refractivity, [1] [2], is a measure of the total polarizability of a mole of a substance. For a perfect dielectric which is made of one type of molecule, the molar refractivity is proportional to the polarizability of a single molecule of the substance. For real materials, intermolecular interactions (the effect of the induced dipole ...
The dipoles do not cancel out, resulting in a net dipole. The dipole moment of water depends on its state. In the gas phase the dipole moment is ≈ 1.86 debye (D), [11] whereas liquid water (≈ 2.95 D) [12] and ice (≈ 3.09 D) [13] are higher due to differing hydrogen-bonded environments.
Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.
However, care is needed because some authors [6] take out the factor from (), so that = and hence () = /, which is convenient because then the (hyper-)polarizability may be accurately called the (nonlinear-)susceptibility per molecule, but at the same time inconvenient because of the inconsistency with the usual linear polarisability definition ...
Recording optical rotation with a polarimeter: The plane of polarisation of plane polarised light (4) rotates (6) as it passes through an optically active sample (5). This angle is determined with a rotatable polarizing filter (7). In chemistry, specific rotation ([α]) is a property of a chiral chemical compound.