Search results
Results from the WOW.Com Content Network
In an inertial frame of reference (subscripted "in"), Euler's second law states that the time derivative of the angular momentum L equals the applied torque: = For point particles such that the internal forces are central forces, this may be derived using Newton's second law.
The law of conservation of angular momentum states that in the absence of applied torques, the angular momentum vector is conserved in an inertial reference frame, so =. The angular momentum vector L {\displaystyle \mathbf {L} } can be expressed in terms of the moment of inertia tensor I {\displaystyle \mathbf {I} } and the angular velocity ...
A diagram of angular momentum. Showing angular velocity (Scalar) and radius. In physics, angular mechanics is a field of mechanics which studies rotational movement. It studies things such as angular momentum, angular velocity, and torque. It also studies more advanced things such as Coriolis force [1] and Angular aerodynamics.
The angular momentum of m is proportional to the perpendicular component v ⊥ of the velocity, or equivalently, to the perpendicular distance r ⊥ from the origin. Angular momentum is a vector quantity (more precisely, a pseudovector) that represents the product of a body's rotational inertia and rotational velocity (in radians/sec) about a ...
Under a constant torque of magnitude τ, the speed of precession Ω P is inversely proportional to L, the magnitude of its angular momentum: = , where θ is the angle between the vectors Ω P and L. Thus, if the top's spin slows down (for example, due to friction), its angular momentum decreases and so the rate of precession increases.
The greater the angular momentum of the spinning object such as a top, the greater its tendency to continue to spin. The angular momentum of a rotating body is proportional to its mass and to how rapidly it is turning. In addition, the angular momentum depends on how the mass is distributed relative to the axis of rotation: the further away the ...
Depending on the gear ratio of the bicycle, a (torque, angular speed) input pair is converted to a (torque, angular speed) output pair. By using a larger rear gear, or by switching to a lower gear in multi-speed bicycles, angular speed of the road wheels is decreased while the torque is increased, product of which (i.e. power) does not change.
where μ is the reduced mass and r is the relative position r 2 − r 1 (with these written taking the center of mass as the origin, and thus both parallel to r) the rate of change of the angular momentum L equals the net torque N = = ˙ ˙ + ¨ , and using the property of the vector cross product that v × w = 0 for any vectors v and w ...