enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divergent series - Wikipedia

    en.wikipedia.org/wiki/Divergent_series

    In mathematics, a divergent series is an ... from the set of series to values. For example, ... different answers for the sum of the same divergent series; so, when ...

  3. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Those methods work on oscillating divergent series, but they cannot produce a finite answer for a series that diverges to +∞. [6] Most of the more elementary definitions of the sum of a divergent series are stable and linear, and any method that is both stable and linear cannot sum 1 + 2 + 3 + ⋯ to a finite value (see § Heuristics below).

  4. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    The more general class of p-series, =, exemplifies the possible results of the test: If p ≤ 0, then the nth-term test identifies the series as divergent. If 0 < p ≤ 1, then the nth-term test is inconclusive, but the series is divergent by the integral test for convergence.

  5. Divergent geometric series - Wikipedia

    en.wikipedia.org/wiki/Divergent_geometric_series

    It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One application for this information is the so-called Borel-Okada principle: If a regular summation method assigns = to / for all in a subset of the complex plane, given certain restrictions on , then the method also gives the analytic continuation of any other function () = = on ...

  6. Abelian and Tauberian theorems - Wikipedia

    en.wikipedia.org/wiki/Abelian_and_tauberian_theorems

    The original examples are Abel's theorem showing that if a series converges to some limit then its Abel sum is the same limit, and Tauber's theorem showing that if the Abel sum of a series exists and the coefficients are sufficiently small (o(1/n)) then the series converges to the Abel sum. More general Abelian and Tauberian theorems give ...

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Therefore, first, the series resulting from addition is summable if the series added were summable, and, second, the sum of the resulting series is the addition of the sums of the added series. The addition of two divergent series may yield a convergent series: for instance, the addition of a divergent series with a series of its terms times ...

  8. Borel summation - Wikipedia

    en.wikipedia.org/wiki/Borel_summation

    This integral converges for all z ≥ 0, so the original divergent series is Borel summable for all such z. This function has an asymptotic expansion as z tends to 0 that is given by the original divergent series. This is a typical example of the fact that Borel summation will sometimes "correctly" sum divergent asymptotic expansions. Again, since

  9. Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Grandi's_series

    However, though it is divergent, it can be manipulated to yield a number of mathematically interesting results. For example, many summation methods are used in mathematics to assign numerical values even to a divergent series. For example, the Cesàro summation and the Ramanujan summation of this series are both 1/2.