enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected (i.e. all of its edges are bidirectional), the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory.

  3. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    adjacency matrix The adjacency matrix of a graph is a matrix whose rows and columns are both indexed by vertices of the graph, with a one in the cell for row i and column j when vertices i and j are adjacent, and a zero otherwise. [4] adjacent 1. The relation between two vertices that are both endpoints of the same edge. [2] 2.

  4. Expander code - Wikipedia

    en.wikipedia.org/wiki/Expander_code

    In coding theory, an expander code is a [,] linear block code whose parity check matrix is the adjacency matrix of a bipartite expander graph.These codes have good relative distance (), where and are properties of the expander graph as defined later, rate (), and decodability (algorithms of running time () exist).

  5. Neighbourhood (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_(graph_theory)

    Neighbourhoods may be used to represent graphs in computer algorithms, via the adjacency list and adjacency matrix representations. Neighbourhoods are also used in the clustering coefficient of a graph, which is a measure of the average density of its neighbourhoods. In addition, many important classes of graphs may be defined by properties of ...

  6. Adjacency algebra - Wikipedia

    en.wikipedia.org/wiki/Adjacency_algebra

    In algebraic graph theory, the adjacency algebra of a graph G is the algebra of polynomials in the adjacency matrix A(G) of the graph. It is an example of a matrix algebra and is the set of the linear combinations of powers of A. [1] Some other similar mathematical objects are also called "adjacency algebra".

  7. Seidel adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Seidel_adjacency_matrix

    The Seidel matrix of G is also the adjacency matrix of a signed complete graph K G in which the edges of G are negative and the edges not in G are positive. It is also the adjacency matrix of the two-graph associated with G and K G. The eigenvalue properties of the Seidel matrix are valuable in the study of strongly regular graphs.

  8. Minimum rank of a graph - Wikipedia

    en.wikipedia.org/wiki/Minimum_rank_of_a_graph

    More generally, a generalized adjacency matrix is any symmetric matrix of real numbers with the same pattern of nonzeros off the diagonal (the diagonal elements may be any real numbers). The minimum rank of G {\displaystyle G} is defined as the smallest rank of any generalized adjacency matrix of the graph; it is denoted by mr ⁡ ( G ...

  9. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...