Ad
related to: second order partial differential equation example problem
Search results
Results from the WOW.Com Content Network
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
Cauchy boundary conditions are simple and common in second-order ordinary differential equations, ″ = ((), ′ (),), where, in order to ensure that a unique solution () exists, one may specify the value of the function and the value of the derivative ′ at a given point =, i.e.,
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena in, i.a., engineering science, quantum mechanics and financial mathematics. Examples include the heat equation, time-dependent Schrödinger equation and the Black–Scholes ...
In mathematics, a Dirichlet problem asks for a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. [1] The Dirichlet problem can be solved for many PDEs, although originally it was posed for Laplace's equation. In that case the ...
The Lax–Wendroff method, named after Peter Lax and Burton Wendroff, [1] is a numerical method for the solution of hyperbolic partial differential equations, based on finite differences. It is second-order accurate in both space and time.
While classical variational problems, such as the brachistochrone problem, can be solved using the Hamilton–Jacobi–Bellman equation, [8] the method can be applied to a broader spectrum of problems. Further it can be generalized to stochastic systems, in which case the HJB equation is a second-order elliptic partial differential equation. [9]
Consider the simple nonlinear second-order differential equation: ″ = (′). This equation is an equation only of y'' and y' , meaning it is reducible to the general form described above and is, therefore, separable.
Ad
related to: second order partial differential equation example problem