Search results
Results from the WOW.Com Content Network
Chronic systemic exposure of mice, rats, and Drosophila to D-galactose causes the acceleration of senescence (aging). It has been reported that high dose exposure of D-galactose (120 mg/kg) can cause reduced sperm concentration and sperm motility in rodents and has been extensively used as an aging model when administered subcutaneously.
α-Galactosidase ( EC 3.2.1.22, α-GAL, α-GAL A; systematic name α-D-galactoside galactohydrolase) is a glycoside hydrolase enzyme that catalyses the following reaction: [1] Hydrolysis of terminal, non-reducing α- D -galactose residues in α- D -galactosides, including galactose oligosaccharides, galactomannans and galactolipids
Galactose-α-1,3-galactose, commonly known as alpha gal and the Galili antigen, is a carbohydrate found in most mammalian cell membranes. It is not found in catarrhines , [ 1 ] including humans, who have lost the GGTA1 gene.
Intermediates and enzymes in the Leloir pathway of galactose metabolism [5] In the first step, galactose mutarotase facilitates the conversion of β-D-galactose to α-D-galactose since this is the active form in the pathway. Next, α-D-galactose is phosphorylated by galactokinase to galactose 1-phosphate.
This galactose molecule is called the H antigen. [28] [29] [30] Blood type A, B, AB, and O differ only in the sugar (red molecule in the illustration) linked with the penultimate galactose. For blood type B, this linked sugar is an α-1‐3‐linked galactose. Using α-GAL, this terminal galactose molecule can be removed, converting RBC to type O.
GalT encodes for the protein galactosyltransferase which catalyzes the transfer of a galactose sugar to an acceptor, forming a glycosidic bond. [5] GalK encodes for a kinase that phosphorylates α-D-galactose to galactose 1-phosphate. [6] Lastly, galM catalyzes the conversion of β-D-galactose to α-D-galactose as the first step in galactose ...
Galactokinase is an enzyme (phosphotransferase) that facilitates the phosphorylation of α-D-galactose to galactose 1-phosphate at the expense of one molecule of ATP. [1] Galactokinase catalyzes the second step of the Leloir pathway, a metabolic pathway found in most organisms for the catabolism of α-D-galactose to glucose 1-phosphate. [2]
The molecular structure of α-lactose, as determined by X-ray crystallography. Lactose crystals, viewed under polarized light. Lactose is a disaccharide composed of galactose and glucose, which form a β-1→4 glycosidic linkage. Its systematic name is β-D-galactopyranosyl-(1→4)-D-glucose.