Search results
Results from the WOW.Com Content Network
GVF – Gas volume fraction is the ratio of the gas volumetric flow rate to the total volumetric flow rate. LVF – Liquid volume fraction is the ratio of the liquid volumetric flow rate to the total volumetric flow rate. Hold up is the cross sectional area occupied by the liquid in the pipe carrying the wet gas flow. Void fraction is the ratio ...
It is the same concept as volume percent (vol%) except that the latter is expressed with a denominator of 100, e.g., 18%. The volume fraction coincides with the volume concentration in ideal solutions where the volumes of the constituents are additive (the volume of the solution is equal to the sum of the volumes of its ingredients).
The "dryness fraction", x, gives the fraction by mass of gaseous water in the wet region, the remainder being droplets of liquid. An enthalpy–entropy chart , also known as the H – S chart or Mollier diagram , plots the total heat against entropy, [ 1 ] describing the enthalpy of a thermodynamic system . [ 2 ]
In hydrometry, the volumetric flow rate is known as discharge. Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m 3 /(m 2 ·s), that is, m·s −1. The integration of a flux over an area gives the volumetric flow rate. The SI unit is cubic metres per ...
Amagat's law states that the extensive volume V = Nv of a gas mixture is equal to the sum of volumes V i of the K component gases, if the temperature T and the pressure p remain the same: [1] [2]
Therefore, gas volume may alternatively be expressed excluding the humidity content: V d (volume dry). This fraction more accurately follows the ideal gas law. On the contrary, V s (volume saturated) is the volume a gas mixture would have if humidity was added to it until saturation (or 100% relative humidity).
Volumetric gas fraction converts trivially to partial pressure ratio, following Dalton's law of partial pressures. Partial pressure blending at constant temperature is computationally simple, and pressure measurement is relatively inexpensive, but maintaining constant temperature during pressure changes requires significant delays for ...
The Lockhart–Martinelli parameter is a dimensionless number used in internal two-phase flow calculations. [1] It expresses the liquid fraction of a flowing fluid. Its main application is in two-phase pressure drop and boiling/condensing heat transfer calculations.