Search results
Results from the WOW.Com Content Network
Continuity and differentiability This function does not have a derivative at the marked point, as the function is not continuous there (specifically, it has a jump discontinuity ). The absolute value function is continuous but fails to be differentiable at x = 0 since the tangent slopes do not approach the same value from the left as they do ...
In mathematics, the approximate limit is a generalization of the ordinary limit for real-valued functions of several real variables.. A function f on has an approximate limit y at a point x if there exists a set F that has density 1 at the point such that if x n is a sequence in F that converges towards x then f(x n) converges towards y.
In mathematical analysis, Rademacher's theorem, named after Hans Rademacher, states the following: If U is an open subset of R n and f: U → R m is Lipschitz continuous, then f is differentiable almost everywhere in U; that is, the points in U at which f is not differentiable form a set of Lebesgue measure zero.
Differentiability is therefore a stronger regularity condition (condition describing the "smoothness" of a function) than continuity, and it is possible for a function to be continuous on the entire real line but not differentiable anywhere (see Weierstrass's nowhere differentiable continuous function). It is possible to discuss the existence ...
In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem. [2]
is continuous at every irrational number, so its points of continuity are dense within the real numbers. Proof of continuity at irrational arguments Since f {\displaystyle f} is periodic with period 1 {\displaystyle 1} and 0 ∈ Q , {\displaystyle 0\in \mathbb {Q} ,} it suffices to check all irrational points in I = ( 0 , 1 ) . {\displaystyle I ...
A continuity equation is the mathematical way to express this kind of statement. For example, the continuity equation for electric charge states that the amount of electric charge in any volume of space can only change by the amount of electric current flowing into or out of that volume through its boundaries.
In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when