enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Art gallery problem - Wikipedia

    en.wikipedia.org/wiki/Art_gallery_problem

    In decision problem versions of the art gallery problem, one is given as input both a polygon and a number k, and must determine whether the polygon can be guarded with k or fewer guards. This problem is -complete, as is the version where the guards are restricted to the edges of the polygon. [10]

  3. Pyomo - Wikipedia

    en.wikipedia.org/wiki/Pyomo

    Pyomo allows users to formulate optimization problems in Python in a manner that is similar to the notation commonly used in mathematical optimization. Pyomo supports an object-oriented style of formulating optimization models, which are defined with a variety of modeling components: sets, scalar and multidimensional parameters, decision variables, objectives, constraints, equations ...

  4. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    GEKKO works on all platforms and with Python 2.7 and 3+. By default, the problem is sent to a public server where the solution is computed and returned to Python. There are Windows, MacOS, Linux, and ARM (Raspberry Pi) processor options to solve without an Internet connection.

  5. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    It has no external dependencies. A convenient thin wrapper to Python is available via the highspy PyPI package. Although generally single-threaded, some solver components can utilize multi-core architectures. HiGHS is designed to solve large-scale models and exploits problem sparsity.

  6. General Problem Solver - Wikipedia

    en.wikipedia.org/wiki/General_Problem_Solver

    General Problem Solver (GPS) is a computer program created in 1957 by Herbert A. Simon, J. C. Shaw, and Allen Newell (RAND Corporation) intended to work as a universal problem solver machine. In contrast to the former Logic Theorist project, the GPS works with means–ends analysis .

  7. Generalized assignment problem - Wikipedia

    en.wikipedia.org/wiki/Generalized_assignment_problem

    In the special case in which all the agents' budgets and all tasks' costs are equal to 1, this problem reduces to the assignment problem. When the costs and profits of all tasks do not vary between different agents, this problem reduces to the multiple knapsack problem. If there is a single agent, then, this problem reduces to the knapsack problem.

  8. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks. Any agent can be assigned to perform any task, incurring some cost that may vary depending on the agent-task assignment.

  9. How to Solve It - Wikipedia

    en.wikipedia.org/wiki/How_to_Solve_It

    First, you have to understand the problem. [2] After understanding, make a plan. [3] Carry out the plan. [4] Look back on your work. [5] How could it be better? If this technique fails, Pólya advises: [6] "If you cannot solve the proposed problem, try to solve first some related problem. Could you imagine a more accessible related problem?"