enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.

  3. Davies–Bouldin index - Wikipedia

    en.wikipedia.org/wiki/Davies–Bouldin_index

    The starting point for this new version of the validation index is the result of a given soft clustering algorithm (e.g. fuzzy c-means), shaped with the computed clustering partitions and membership values associating the elements with the clusters. In the soft domain, each element of the system belongs to every classes, given the membership ...

  4. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Variations of k-means often include such optimizations as choosing the best of multiple runs, but also restricting the centroids to members of the data set (k-medoids), choosing medians (k-medians clustering), choosing the initial centers less randomly (k-means++) or allowing a fuzzy cluster assignment (fuzzy c-means).

  5. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Fuzzy c-means; FLAME clustering (Fuzzy clustering by Local Approximation of MEmberships): define clusters in the dense parts of a dataset and perform cluster assignment solely based on the neighborhood relationships among objects; KHOPCA clustering algorithm: a local clustering algorithm, which produces hierarchical multi-hop clusters in static ...

  6. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  7. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  8. College Football Playoff picks: SMU, Clemson, Vols, Hoosiers ...

    www.aol.com/college-football-playoff-picks-smu...

    Welcome to the new-look postseason, where the path to the national championship begins at campus sites for eight of the 12 teams in the College Football Playoff. Snow showers are forecast to give ...

  9. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Fuzzy C-Means Clustering is a soft version of k-means, where each data point has a fuzzy degree of belonging to each cluster. Gaussian mixture models trained with expectation–maximization algorithm (EM algorithm) maintains probabilistic assignments to clusters, instead of deterministic assignments, and multivariate Gaussian distributions ...