Search results
Results from the WOW.Com Content Network
The median of a finite list of numbers is the "middle" number, when those numbers are listed in order from smallest to greatest. If the data set has an odd number of observations, the middle one is selected (after arranging in ascending order). For example, the following list of seven numbers, 1, 3, 3, 6, 7, 8, 9
The zeta distribution has uses in applied statistics and statistical mechanics, and perhaps may be of interest to number theorists. It is the Zipf distribution for an infinite number of elements. The Hardy distribution, which describes the probabilities of the hole scores for a given golf player.
Although the sample median is probably among the best distribution-independent point estimates of the population median, what this example illustrates is that it is not a particularly good one in absolute terms. In this particular case, a better confidence interval for the median is the one delimited by the 2nd and 5th order statistics, which ...
In this example, the ratio (probability of living during an interval) / (duration of the interval) is approximately constant, and equal to 2 per hour (or 2 hour −1). For example, there is 0.02 probability of dying in the 0.01-hour interval between 5 and 5.01 hours, and (0.02 probability / 0.01 hours) = 2 hour −1.
The five-number summary gives information about the location (from the median), spread (from the quartiles) and range (from the sample minimum and maximum) of the observations. Since it reports order statistics (rather than, say, the mean) the five-number summary is appropriate for ordinal measurements, as well as interval and ratio measurements.
Boxplot (with an interquartile range) and a probability density function (pdf) of a Normal N(0,σ 2) Population. In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. [1]
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
Firstly, computing median of an odd list is faster and simpler; while one could use an even list, this requires taking the average of the two middle elements, which is slower than simply selecting the single exact middle element. Secondly, five is the smallest odd number such that median of medians works.