enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric displacement field - Wikipedia

    en.wikipedia.org/wiki/Electric_displacement_field

    Illustration of polarization due to a negative charge. In any material, if there is an inversion center then the charge at, for instance, + and are the same. This means that there is no dipole. If an electric field is applied to an insulator, then (for instance) the negative charges can move slightly towards the positive side of the field, and ...

  3. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    If the ball is thrown upwards, the work done by the gravitational force is negative, and is equal to the weight multiplied by the displacement in the upwards direction. Both force and displacement are vectors. The work done is given by the dot product of the two vectors, where the result is a scalar.

  4. Displacement current - Wikipedia

    en.wikipedia.org/wiki/Displacement_current

    In electromagnetism, displacement current density is the quantity ∂D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is.

  5. Displacement (geometry) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(geometry)

    In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. [1] It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory .

  6. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  7. Deformation (physics) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(physics)

    In physics and continuum mechanics, deformation is the change in the shape or size of an object. It has dimension of length with SI unit of metre (m). It is quantified as the residual displacement of particles in a non-rigid body, from an initial configuration to a final configuration, excluding the body's average translation and rotation (its rigid transformation). [1]

  8. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    The displacement thickness, momentum thickness, and shape factor can, in principle, all be calculated using the same approach described above for the bounded boundary layer case. However, the peaked nature of the unbounded boundary layer means the inertial section of the displacement thickness and momentum thickness will tend to cancel the near ...

  9. Negative thermal expansion - Wikipedia

    en.wikipedia.org/wiki/Negative_thermal_expansion

    Negative thermal expansion (NTE) is an unusual physicochemical process in which some materials contract upon heating, rather than expand as most other materials do. The most well-known material with NTE is water at 0 to 3.98 °C.