Search results
Results from the WOW.Com Content Network
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
For the first term in the Taylor series, all digits must be processed. In the last term of the Taylor series, however, there's only one digit remaining to be processed. In all of the intervening terms, the number of digits to be processed can be approximated by linear interpolation. Thus the total is given by:
The remainder term arises because the integral is usually not exactly equal to the sum. The formula may be derived by applying repeated integration by parts to successive intervals [r, r + 1] for r = m, m + 1, …, n − 1. The boundary terms in these integrations lead to the main terms of the formula, and the leftover integrals form the ...
The left-hand side is the Maclaurin series expansion of the right-hand side. Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no ...
The Taylor series of any polynomial is the polynomial itself.. The Maclaurin series of 1 / 1 − x is the geometric series + + + +. So, by substituting x for 1 − x, the Taylor series of 1 / x at a = 1 is
The first four partial sums of the series 1 ... in two steps, as follows. The first key insight is ... enough for the remainder terms in the Euler–Maclaurin ...
[1] [2] One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision. There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the
These two rules can be associated with Euler–MacLaurin formula with the first derivative term and named First order Euler–MacLaurin integration rules. [8] The two rules presented above differ only in the way how the first derivative at the region end is calculated.