enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Baryon asymmetry - Wikipedia

    en.wikipedia.org/wiki/Baryon_asymmetry

    Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges. [3] The Big Bang should have produced equal amounts of matter and antimatter. Since this does not seem to have been ...

  3. Here’s why the universe has more matter than antimatter - AOL

    www.aol.com/why-universe-more-matter-antimatter...

    All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.

  4. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...

  5. Baryogenesis - Wikipedia

    en.wikipedia.org/wiki/Baryogenesis

    The majority of ordinary matter in the universe is found in atomic nuclei, which are made of neutrons and protons.There is no evidence of primordial antimatter. In the universe about 1 in 10,000 protons are antiprotons, consistent with ongoing production due to cosmic rays.

  6. List of unsolved problems in astronomy - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Since 2003, Jean-Pierre Luminet, et al., and other groups have suggested that the shape of the universe may be the Poincaré dodecahedral space. Is the shape unmeasurable, the Poincaré space, or another 3-manifold? Cosmic inflation: Is the theory of cosmic inflation in the very early universe correct? If so, what are the details of this epoch?

  7. Cosmological lithium problem - Wikipedia

    en.wikipedia.org/wiki/Cosmological_lithium_problem

    Hydrogen-1 is the most abundant nuclide, comprising roughly 92% of the atoms in the Universe, with helium-4 second at 8%. Other isotopes including 2 H, 3 H, 3 He, 6 Li, 7 Li, and 7 Be are much rarer; the estimated abundance of primordial lithium is 10 −10 relative to hydrogen. [7]

  8. CP violation - Wikipedia

    en.wikipedia.org/wiki/CP_violation

    CP violation in the lepton sector generates a matter-antimatter asymmetry through a process called leptogenesis. This could become the preferred explanation in the Standard Model for the matter-antimatter asymmetry of the universe if CP violation is experimentally confirmed in the lepton sector. [31]

  9. Antihydrogen - Wikipedia

    en.wikipedia.org/wiki/Antihydrogen

    In November 2010, the ALPHA collaboration announced that they had trapped 38 antihydrogen atoms for a sixth of a second, [23] the first confinement of neutral antimatter. In June 2011, they trapped 309 antihydrogen atoms, up to 3 simultaneously, for up to 1,000 seconds. [24] They then studied its hyperfine structure, gravity effects, and charge.