Search results
Results from the WOW.Com Content Network
where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given polyhedron. Any convex polyhedron's surface has Euler characteristic = + = . This equation, stated by Euler in 1758, [2] is known as Euler's polyhedron formula. [3]
Euler's formula can also be proved as follows: if the graph isn't a tree, then remove an edge which completes a cycle. This lowers both e and f by one, leaving v – e + f constant. Repeat until the remaining graph is a tree; trees have v = e + 1 and f = 1, yielding v – e + f = 2, i. e., the Euler characteristic is 2.
He introduced a formula governing the relationship between the number of edges, vertices, and faces of a convex polyhedron. Given such a polyhedron, the alternating sum of vertices, edges and faces equals a constant: V − E + F = 2. This constant, χ, is the Euler characteristic of the plane.
This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron {p,q} is a regular q-gon. The solid angle of a face subtended from the center of a platonic solid is equal to the solid angle of a full sphere (4 π steradians) divided by the number of faces.
Let the number of vertices be V, edges be E, faces be F, components H, shells S, and let the genus be G (S and G correspond to the b 0 and b 2 Betti numbers respectively). Then, to denote a meaningful geometric object, the mesh must satisfy the generalized Euler–Poincaré formula. V – E + F = H + 2 * (S – G) The Euler operators preserve ...
Euler's polyhedral formula for planar graphs or polyhedra: v − e + f = 2, a special case of the Euler characteristic in topology; Euler's formula for the critical load of a column: = Euler's continued fraction formula connecting a finite sum of products with a finite continued fraction
Richeson relates the history of Euler's formula V − E + F = 2 connecting the numbers of vertices, edges, and faces of a convex polyhedron. The story leads from Euler's first observation in 1750 to modern topology and the mathematics of William Thurston and Grigori Perelman. [9]
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.