enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Its Euler characteristic is 0, by the product property. More generally, any compact parallelizable manifold, including any compact Lie group, has Euler characteristic 0. [12] The Euler characteristic of any closed odd-dimensional manifold is also 0. [13] The case for orientable examples is a corollary of Poincaré duality.

  3. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k, where k is the non-orientable genus.

  4. Poincaré–Hopf theorem - Wikipedia

    en.wikipedia.org/wiki/Poincaré–Hopf_theorem

    Then use the fact that the degree of a map from the boundary of an n-dimensional manifold to an (n–1)-dimensional sphere, that can be extended to the whole n-dimensional manifold, is zero. [citation needed] Finally, identify this sum of indices as the Euler characteristic of M.

  5. Euler class - Wikipedia

    en.wikipedia.org/wiki/Euler_class

    Since the tangent bundle of the sphere is stably trivial but not trivial, all other characteristic classes vanish on it, and the Euler class is the only ordinary cohomology class that detects non-triviality of the tangent bundle of spheres: to prove further results, one must use secondary cohomology operations or K-theory.

  6. Hairy ball theorem - Wikipedia

    en.wikipedia.org/wiki/Hairy_ball_theorem

    The connection with the Euler characteristic χ suggests the correct generalisation: the 2n-sphere has no non-vanishing vector field for n ≥ 1. The difference between even and odd dimensions is that, because the only nonzero Betti numbers of the m-sphere are b 0 and b m, their alternating sum χ is 2 for m even, and 0 for m odd.

  7. Genus g surface - Wikipedia

    en.wikipedia.org/wiki/Genus_g_surface

    The genus (sometimes called the demigenus or Euler genus) of a connected non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − g, where g is the non-orientable ...

  8. Uniformization theorem - Wikipedia

    en.wikipedia.org/wiki/Uniformization_theorem

    The classification is consistent with the Gauss–Bonnet theorem, which implies that for a closed surface with constant curvature, the sign of that curvature must match the sign of the Euler characteristic. The Euler characteristic is equal to 2 – 2g, where g is the genus of the 2-manifold, i.e. the number of "holes".

  9. Riemann–Hurwitz formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hurwitz_formula

    In calculating the Euler characteristic of S′ we notice the loss of e P − 1 copies of P above π(P) (that is, in the inverse image of π(P)). Now let us choose triangulations of S and S′ with vertices at the branch and ramification points, respectively, and use these to compute the Euler characteristics.