enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    In structural and mechanical engineering, the shear strength of a component is important for designing the dimensions and materials to be used for the manufacture or construction of the component (e.g. beams, plates, or bolts). In a reinforced concrete beam, the main purpose of reinforcing bar (rebar) stirrups is to increase the shear strength.

  3. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  4. Properties of concrete - Wikipedia

    en.wikipedia.org/wiki/Properties_of_concrete

    Twenty eight days is a long wait to determine if desired strengths are going to be obtained, so three-day and seven-day strengths can be useful to predict the ultimate 28-day compressive strength of the concrete. A 25% strength gain between 7 and 28 days is often observed with 100% OPC (ordinary Portland cement) mixtures, and between 25% and 40 ...

  5. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    Mohr–Coulomb theory is a mathematical model (see yield surface) describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope.

  6. Size effect on structural strength - Wikipedia

    en.wikipedia.org/wiki/Size_Effect_on_Structural...

    For most normal-scale applications to metals and fine-grained ceramics, except for micrometer scale devices, the size is large enough for the Weibull theory to apply (but not for coarse-grained materials such as concrete). From Eq. 2 one can show that the mean strength and the coefficient of variation of strength are obtained as follows:

  7. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    In general, the yield strength of a material is an adequate indicator of the material's mechanical strength. Considered in tandem with the fact that the yield strength is the parameter that predicts plastic deformation in the material, one can make informed decisions on how to increase the strength of a material depending on its microstructural ...

  8. Concrete slab - Wikipedia

    en.wikipedia.org/wiki/Concrete_slab

    As a result, any stress induced by a load, static or dynamic, must be within the limit of the concrete's flexural strength to prevent cracking. [19] Since unreinforced concrete is relatively very weak in tension, it is important to consider the effects of tensile stress caused by reactive soil, wind uplift, thermal expansion, and cracking. [20]

  9. Reinforced concrete - Wikipedia

    en.wikipedia.org/wiki/Reinforced_concrete

    Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility.