Search results
Results from the WOW.Com Content Network
Atmospheric pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m 3, μg/m 3, etc.) at sea level will decrease with increasing altitude because the atmospheric pressure decreases with increasing altitude. The change of atmospheric pressure with altitude can be obtained from this equation: [2]
For example, the conversion factor between a mass fraction of 1 ppb and a mole fraction of 1 ppb is about 4.7 for the greenhouse gas CFC-11 in air (Molar mass of CFC-11 / Mean molar mass of air = 137.368 / 28.97 = 4.74). For volume fraction, the suffix "V" or "v" is sometimes appended to the parts-per notation (e.g. ppmV, ppbv, pptv).
pure water at 3.984 °C, temperature of its maximum density (1.0000 g/cm 3) [24] 10 2: hM 118.8 M: pure osmium at 20 °C (22.587 g/cm 3) [25] 140.5 M: pure copper at 25 °C (8.93 g/cm 3) 10 3: kM: 10 4: 24 kM: helium in the solar core (150 g/cm 3 ⋅ 65%) [26] 10 5: 10 6: MM: 10 7: 10 8: 122.2 MM: nuclei in a white dwarf from a 3 M ...
However, most chemical literature traditionally uses mol/dm 3, which is the same as mol/L. This traditional unit is often called a molar and denoted by the letter M, for example: 1 mol/m 3 = 10 −3 mol/dm 3 = 10 −3 mol/L = 10 −3 M = 1 mM = 1 mmol/L. The SI prefix "mega" (symbol M) has the same symbol. However, the prefix is never used ...
The standard liter per minute (SLM or SLPM) is a unit of (molar or) mass flow rate of a gas at standard conditions for temperature and pressure (STP), which is most commonly practiced in the United States, whereas European practice revolves around the normal litre per minute (NLPM). [1]
For example, 50 g of zinc will react with oxygen to produce 62.24 g of zinc oxide, implying that the zinc has reacted with 12.24 g of oxygen (from the Law of conservation of mass): the equivalent weight of zinc is the mass which will react with eight grams of oxygen, hence 50 g × 8 g/12.24 g = 32.7 g.
A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume). This is incorrect because the unit "%" can only be used for dimensionless quantities. Instead, the concentration should simply be given in units of g/mL.
For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: f eq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be called a "2 normal" solution.