enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0).

  3. Quantum foam - Wikipedia

    en.wikipedia.org/wiki/Quantum_foam

    A graphic representation of Wheeler's calculations of what quantum reality may look like at the Planck length. Quantum foam (or spacetime foam, or spacetime bubble) is a theoretical quantum fluctuation of spacetime on very small scales due to quantum mechanics.

  4. Baryon asymmetry - Wikipedia

    en.wikipedia.org/wiki/Baryon_asymmetry

    In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, [1] [2] is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe.

  5. Flatness (cosmology) - Wikipedia

    en.wikipedia.org/wiki/Flatness_(cosmology)

    This is equivalent to a mass density of 9.9 × 10 −30 g/cm 3, which is equivalent to only 5.9 protons per cubic meter.” [1] The WMAP data are consistent with a flat geometry, with Ω = 1.02 +/- 0.02.

  6. Big Crunch - Wikipedia

    en.wikipedia.org/wiki/Big_Crunch

    The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach absolute zero, an event potentially followed by a reformation of the universe starting with another Big Bang.

  7. Zero-energy universe - Wikipedia

    en.wikipedia.org/wiki/Zero-energy_universe

    Experimental proof for the observable universe being a "zero-energy universe" is currently inconclusive. Gravitational energy from visible matter accounts for 26–37% of the observed total mass–energy density. [15]

  8. Gravitational interaction of antimatter - Wikipedia

    en.wikipedia.org/wiki/Gravitational_interaction...

    The CPT theorem implies that the difference between the properties of a matter particle and those of its antimatter counterpart is completely described by C-inversion. Since this C-inversion does not affect gravitational mass, the CPT theorem predicts that the gravitational mass of antimatter is the same as that of ordinary matter. [5]

  9. Baryogenesis - Wikipedia

    en.wikipedia.org/wiki/Baryogenesis

    This imbalance has to be exceptionally small, on the order of 1 in every 1 630 000 000 (≈ 2 × 10 9) particles a small fraction of a second after the Big Bang. [6] After most of the matter and antimatter was annihilated, what remained was all the baryonic matter in the current universe, along with a much greater number of bosons.