enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    Graph of a polynomial of degree 4, with 3 critical points and four real roots (crossings of the x axis) (and thus no complex roots). If one or the other of the local minima were above the x axis, or if the local maximum were below it, or if there were no local maximum and one minimum below the x axis, there would only be two real roots (and two complex roots).

  3. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points. + + + + = where a ≠ 0. The quartic is the highest order polynomial equation that can be solved by radicals in the general case (i.e., one in which the coefficients can take any value).

  4. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For polynomials with real or complex coefficients, it is not possible to express a lower bound of the root separation in terms of the degree and the absolute values of the coefficients only, because a small change on a single coefficient transforms a polynomial with multiple roots into a square-free polynomial with a small root separation, and ...

  5. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    The following names are assigned to polynomials according to their degree: [2] [3] [4] Special case – zero (see § Degree of the zero polynomial, below) Degree 0 – non-zero constant [5] Degree 1 – linear; Degree 2 – quadratic; Degree 3 – cubic; Degree 4 – quartic (or, if all terms have even degree, biquadratic) Degree 5 – quintic

  6. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Any general polynomial of degree n = + + + + (with the coefficients being real or complex numbers and a n ≠ 0) has n (not necessarily distinct) complex roots r 1, r 2, ..., r n by the fundamental theorem of algebra.

  7. Gauss–Lucas theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Lucas_theorem

    For a fourth degree complex polynomial P (quartic function) with four distinct zeros forming a concave quadrilateral, one of the zeros of P lies within the convex hull of the other three; all three zeros of P' lie in two of the three triangles formed by the interior zero of P and two others zeros of P.

  8. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    This is illustrated by Wilkinson's polynomial: the roots of this polynomial of degree 20 are the 20 first positive integers; changing the last bit of the 32-bit representation of one of its coefficient (equal to –210) produces a polynomial with only 10 real roots and 10 complex roots with imaginary parts larger than 0.6.

  9. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    The integer n is called the index or degree, and the number x of which the root is taken is the radicand. A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction.