Search results
Results from the WOW.Com Content Network
Similar protein sequences, usually indicate shared functions. Proteins of similar sequence are usually homologous [5] and thus have a similar function. Hence proteins in a newly sequenced genome are routinely annotated using the sequences of similar proteins in related genomes. However, closely related proteins do not always share the same ...
[3] [4] The sequence of a protein is unique to that protein, and defines the structure and function of the protein. The sequence of a protein can be determined by methods such as Edman degradation or tandem mass spectrometry. Often, however, it is read directly from the sequence of the gene using the genetic code.
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location ...
This structure is determined by the amino-acid sequence or primary structure. [2] The correct three-dimensional structure is essential to function, although some parts of functional proteins may remain unfolded, [3] indicating that protein dynamics are important. Failure to fold into a native structure generally produces inactive proteins, but ...
The goal of protein design is to find a protein sequence that will fold to a target structure. A protein design algorithm must, thus, search all the conformations of each sequence, with respect to the target fold, and rank sequences according to the lowest-energy conformation of each one, as determined by the protein design energy function.
Proteins are often synthesized in an inactive precursor form; typically, an N-terminal or C-terminal segment blocks the active site of the protein, inhibiting its function. The protein is activated by cleaving off the inhibitory peptide. Some proteins even have the power to cleave themselves.
Protein methods are the techniques used to study proteins. There are experimental methods for studying proteins (e.g., for detecting proteins, for isolating and purifying proteins, and for characterizing the structure and function of proteins, [1] often requiring that the protein first be purified). Computational methods typically use computer ...
Another important distinction to identify protein–protein interactions is the way they have been determined, since there are techniques that measure direct physical interactions between protein pairs, named “binary” methods, while there are other techniques that measure physical interactions among groups of proteins, without pairwise ...