enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The frequencies of light that an atom can emit are dependent on states the electrons can be in. When excited, an electron moves to a higher energy level or orbital. When the electron falls back to its ground level the light is emitted. Emission spectrum of hydrogen. The above picture shows the visible light emission spectrum for hydrogen. If ...

  3. Jablonski diagram - Wikipedia

    en.wikipedia.org/wiki/Jablonski_diagram

    The changes between these levels are called "transitions" and are plotted on the Jablonski diagram. Radiative transitions involve either the absorption or emission of a photon. As mentioned above, these transitions are denoted with solid arrows with their tails at the initial energy level and their tips at the final energy level.

  4. Absorption (electromagnetic radiation) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(electromagnetic...

    An overview of absorption of electromagnetic radiation.This example shows the general principle using visible light as a specific example. A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines).

  5. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    An increase in energy level from E 1 to E 2 resulting from absorption of a photon represented by the red squiggly arrow, and whose energy is h ν. A decrease in energy level from E 2 to E 1 resulting in emission of a photon represented by the red squiggly arrow, and whose energy is h ν.

  6. Atomic spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Atomic_spectroscopy

    In optical spectroscopy, energy absorbed to move an electron to a higher energy level (higher orbital) and/or the energy emitted as the electron moves to a lower energy level is absorbed or emitted in the form of photons (light particles). Because each element has a unique number of electrons, an atom will absorb/release energy in a pattern ...

  7. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    Together, wave and particle effects fully explain the emission and absorption spectra of EM radiation. The matter-composition of the medium through which the light travels determines the nature of the absorption and emission spectrum. These bands correspond to the allowed energy levels in the atoms.

  8. Absorption band - Wikipedia

    en.wikipedia.org/wiki/Absorption_band

    When electromagnetic radiation is absorbed by an atom or molecule, the energy of the radiation changes the state of the atom or molecule from an initial state to a final state. The number of states in a specific energy range is discrete for gaseous or diluted systems, with discrete energy levels .

  9. Electron excitation - Wikipedia

    en.wikipedia.org/wiki/Electron_excitation

    Within a semiconductor crystal lattice, thermal excitation is a process where lattice vibrations provide enough energy to transfer electrons to a higher energy band such as a more energetic sublevel or energy level. [3] When an excited electron falls back to a state of lower energy, it undergoes electron relaxation (deexcitation [4]).