enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    A simple example of a Butterworth filter is the third-order low-pass design shown in the figure on the right, with = 4/3 F, = 1 Ω, = 3/2 H, and = 1/2 H. [3] Taking the impedance of the capacitors to be / and the impedance of the inductors to be , where = + is the complex frequency, the circuit equations yield the transfer function for this device:

  3. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...

  4. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The transfer function coefficients can also be used to construct another type of canonical form ˙ = [] + [] () = [] (). This state-space realization is called observable canonical form because the resulting model is guaranteed to be observable (i.e., because the output exits from a chain of integrators, every state has an effect on the output).

  5. Low-pass filter - Wikipedia

    en.wikipedia.org/wiki/Low-pass_filter

    If the transfer function of a first-order low-pass filter has a zero as well as a pole, the Bode plot flattens out again, at some maximum attenuation of high frequencies; such an effect is caused for example by a little bit of the input leaking around the one-pole filter; this one-pole–one-zero filter is still a first-order low-pass.

  6. Digital biquad filter - Wikipedia

    en.wikipedia.org/wiki/Digital_biquad_filter

    In signal processing, a digital biquad filter is a second order recursive linear filter, containing two poles and two zeros. "Biquad" is an abbreviation of "biquadratic", which refers to the fact that in the Z domain, its transfer function is the ratio of two quadratic functions:

  7. Digital filter - Wikipedia

    en.wikipedia.org/wiki/Digital_filter

    Mathematical analysis of the transfer function can describe how it will respond to any input. As such, designing a filter consists of developing specifications appropriate to the problem (for example, a second-order low-pass filter with a specific cut-off frequency), and then producing a transfer function that meets the specifications.

  8. Bilinear transform - Wikipedia

    en.wikipedia.org/wiki/Bilinear_transform

    The bilinear transform is a first-order Padé approximant of the natural logarithm function that is an exact mapping of the z-plane to the s-plane.When the Laplace transform is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayed unit impulse), the result is precisely the Z transform of the discrete-time sequence with the ...

  9. Mason's gain formula - Wikipedia

    en.wikipedia.org/wiki/Mason's_gain_formula

    Mason's gain formula (MGF) is a method for finding the transfer function of a linear signal-flow graph (SFG). The formula was derived by Samuel Jefferson Mason, [1] for whom it is named. MGF is an alternate method to finding the transfer function algebraically by labeling each signal, writing down the equation for how that signal depends on ...

  1. Related searches standard second order transfer function simulink method equation example

    transfer function formulatransfer function model