enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    An increase in energy level from E 1 to E 2 resulting from absorption of a photon represented by the red squiggly arrow, and whose energy is h ν. A decrease in energy level from E 2 to E 1 resulting in emission of a photon represented by the red squiggly arrow, and whose energy is h ν.

  3. Absorption (electromagnetic radiation) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(electromagnetic...

    By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]

  4. Kasha's rule - Wikipedia

    en.wikipedia.org/wiki/Kasha's_rule

    A corollary of Kasha's rule is the Vavilov rule, which states that the quantum yield of luminescence is generally independent of the excitation wavelength. [4] [7] This can be understood as a consequence of the tendency – implied by Kasha's rule – for molecules in upper states to relax to the lowest excited state non-radiatively.

  5. Einstein coefficients - Wikipedia

    en.wikipedia.org/wiki/Einstein_coefficients

    Stimulated emission (also known as induced emission) is the process by which an electron is induced to jump from a higher energy level to a lower one by the presence of electromagnetic radiation at (or near) the frequency of the transition. From the thermodynamic viewpoint, this process must be regarded as negative absorption.

  6. Jablonski diagram - Wikipedia

    en.wikipedia.org/wiki/Jablonski_diagram

    The changes between these levels are called "transitions" and are plotted on the Jablonski diagram. Radiative transitions involve either the absorption or emission of a photon. As mentioned above, these transitions are denoted with solid arrows with their tails at the initial energy level and their tips at the final energy level.

  7. Atomic spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Atomic_spectroscopy

    In optical spectroscopy, energy absorbed to move an electron to a higher energy level (higher orbital) and/or the energy emitted as the electron moves to a lower energy level is absorbed or emitted in the form of photons (light particles). Because each element has a unique number of electrons, an atom will absorb/release energy in a pattern ...

  8. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    Emission spectroscopy is a spectroscopic technique which examines the wavelengths of photons emitted by atoms or molecules during their transition from an excited state to a lower energy state. Each element emits a characteristic set of discrete wavelengths according to its electronic structure , and by observing these wavelengths the elemental ...

  9. Absorption spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Absorption_spectroscopy

    The emission spectrum of iron. Emission is a process by which a substance releases energy in the form of electromagnetic radiation. Emission can occur at any frequency at which absorption can occur, and this allows the absorption lines to be determined from an emission spectrum.