Search results
Results from the WOW.Com Content Network
In organic chemistry, organocatalysis is a form of catalysis in which the rate of a chemical reaction is increased by an organic catalyst. This "organocatalyst" consists of carbon , hydrogen , sulfur and other nonmetal elements found in organic compounds.
The discipline organocatalysis is divided into the application of covalent (e.g., proline, DMAP) and non-covalent (e.g., thiourea organocatalysis) organocatalysts referring to the preferred catalyst-substrate binding and interaction, respectively. The Nobel Prize in Chemistry 2021 was awarded jointly to Benjamin List and David W.C. MacMillan ...
In the context of organocatalysis, both concepts of on-water reactions and in-the-presence-of-water reactions were criticized in 2007 as not so environmentally friendly by Donna Blackmond. According to Blackmond, separation of reaction product from the water phase usually requires organic solvent anyway, and in reported aqueous systems the ...
Hydrogen-bond catalysis is a type of organocatalysis that relies on use of hydrogen bonding interactions to accelerate and control organic reactions. In biological systems, hydrogen bonding plays a key role in many enzymatic reactions, both in orienting the substrate molecules and lowering barriers to reaction. [1]
Organocatalysis is a subfield of catalysis that explores the potential of organic small molecules as catalysts, particularly for the enantioselective creation of chiral molecules. One strategy in this subfield is the use of chiral secondary amines to activate carbonyl compounds.
Unsaturated NHO. An N-heterocyclic olefin (NHO) is a neutral heterocyclic compound with a highly polarized, electron-rich C=C olefin attached to a heterocycle made up of two nitrogen atoms.
Schreiner's thiourea, N,N'-bis3,5-bis(trifluormethyl)phenyl thiourea, combines all structural features for double H-bonding mediated organocatalysis: electron-poor; rigid structure; non-coordinating, electron withdrawing substituents in 3,4, and/or 5 position of a phenyl ring; the 3,5-bis(trifluoromethyl)phenyl-group is the preferred substituent
Proline organocatalysis is the use of proline as an organocatalyst in organic chemistry. This theme is often considered the starting point for the area of organocatalysis, even though early discoveries went unappreciated. [1] Modifications, such as MacMillan’s catalyst and Jorgensen's catalysts, proceed with excellent stereocontrol. [2]: 5574 [3]