Search results
Results from the WOW.Com Content Network
Sophisticated applications allow savvy users to write custom shaders in a shading language such as HLSL or GLSL, though increasingly node-based material editors that allow a graph-based workflow with native support for important concepts such as light position, levels of reflection and emission and metallicity, and a wide range of other math ...
The High-Level Shader Language [1] or High-Level Shading Language [2] (HLSL) is a proprietary shading language developed by Microsoft for the Direct3D 9 API to augment the shader assembly language, and went on to become the required shading language for the unified shader model of Direct3D 10 and higher.
The unified shader model uses the same hardware resources for both vertex and fragment processing. In the field of 3D computer graphics, the unified shader model (known in Direct3D 10 as "Shader Model 4.0") refers to a form of shader hardware in a graphical processing unit (GPU) where all of the shader stages in the rendering pipeline (geometry, vertex, pixel, etc.) have the same capabilities.
The shader assembly language in Direct3D 8 and 9 is the main programming language for vertex and pixel shaders in Shader Model 1.0/1.1, 2.0, and 3.0. It is a direct representation of the intermediate shader bytecode which is passed to the graphics driver for execution.
This shader works by replacing all light areas of the image with white, and all dark areas with a brightly colored texture. In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene—a process known as shading.
Originally, this functionality was achieved by writing shaders in ARB assembly language – a complex and unintuitive task. The OpenGL ARB created the OpenGL Shading Language to provide a more intuitive method for programming the graphics processing unit while maintaining the open standards advantage that has driven OpenGL throughout its history.
A cel shader is often used to mimic the style of a comic book or cartoon and/or give the render a characteristic paper-like texture. [1] There are similar techniques that can make an image look like a sketch , an oil painting or an ink painting .
In the field of 3D computer graphics, deferred shading is a screen-space shading technique that is performed on a second rendering pass, after the vertex and pixel shaders are rendered. [2] It was first suggested by Michael Deering in 1988. [3] On the first pass of a deferred shader, only data that is required for shading computation is gathered.