Search results
Results from the WOW.Com Content Network
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.
An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B. Due to symmetry, odds ratio reciprocally calculates the ratio of the odds of B occurring in the presence of A, and the odds of B in the absence of A.
In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis, logistic regression [1] (or logit regression) estimates the parameters of a logistic model (the coefficients in the linear or non linear combinations).
The logarithm function is not defined for zero, so log probabilities can only represent non-zero probabilities. Since the logarithm of a number in (,) interval is negative, often the negative log probabilities are used. In that case the log probabilities in the following formulas would be inverted.
In probability theory and statistics, odds and similar ratios may be more natural or more convenient than probabilities. In some cases the log-odds are used, which is the logit of the probability. Most simply, odds are frequently multiplied or divided, and log converts multiplication to addition and division to subtractions.
Suppose the odds ratio between the two is 1 : 1. Now if the option of a red bus is introduced, a person may be indifferent between a red and a blue bus, and hence may exhibit a car : blue bus : red bus odds ratio of 1 : 0.5 : 0.5, thus maintaining a 1 : 1 ratio of car : any bus while adopting a changed car : blue bus ratio of 1 : 0.5.
In practice the odds ratio is commonly used for case-control studies, as the relative risk cannot be estimated. [1] In fact, the odds ratio has much more common use in statistics, since logistic regression, often associated with clinical trials, works with the log of the odds ratio, not relative risk. Because the (natural log of the) odds of a ...
Stated in terms of odds, Bayes' rule states that the posterior odds of two alternatives, and , given an event , is the prior odds, times the likelihood ratio. As an equation: O ( A 1 : A 2 ∣ B ) = O ( A 1 : A 2 ) ⋅ Λ ( A 1 : A 2 ∣ B ) . {\displaystyle O(A_{1}:A_{2}\mid B)=O(A_{1}:A_{2})\cdot \Lambda (A_{1}:A_{2}\mid ...