Search results
Results from the WOW.Com Content Network
Aerobic respiration requires oxygen (O 2) in order to create ATP. Although carbohydrates , fats and proteins are consumed as reactants , aerobic respiration is the preferred method of pyruvate production in glycolysis , and requires pyruvate to the mitochondria in order to be oxidized by the citric acid cycle .
Summary of aerobic respiration. Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine ...
For complete oxidation of such compounds, the chemical equation is C x H y O z + (x + y/4 - z/2) O 2 → x CO 2 + (y/2) H 2 O and thus metabolism of this compound gives an RQ of x/(x + y/4 - z/2). For glucose, with the molecular formula, C 6 H 12 O 6, the complete oxidation equation is C 6 H 12 O 6 + 6 O 2 → 6 CO 2 + 6 H 2 O. Thus, the RQ= 6 ...
During normal aerobic respiration the ratio would be somewhere between these values, as the TCA cycle produces both NADH and ubiquinol. The resulting P/O ratio would be the ratio of H/O and H/P; which is 10/3.67 or 2.73 for NADH-linked respiration, and 6/3.67 or 1.64 for UQH2-linked respiration, with actual values being somewhere between.
Aerobic organisms use a process called aerobic respiration to create ATP from ADP and a phosphate. Glucose (a monosaccharide ) is oxidized to power the electron transport chain: [ 8 ] This equation is a summary of what happens in three series of biochemical reactions: glycolysis , the Krebs cycle (also known as the Citric acid cycle ), and ...
Although physiologic respiration is necessary to sustain cellular respiration and thus life in animals, the processes are distinct: cellular respiration takes place in individual cells of the organism, while physiologic respiration concerns the diffusion and transport of metabolites between the organism and the external environment.
The above general form, when considering O 2 as the oxidant, is the equation for respiration. In this context specifically, the above equation represents bacterial respiration though the reactants and products are essentially analogous to the short-hand equations used for multi-cellular respiration.
The chemical equations below summarize the fermentation of sucrose (C 12 H 22 O 11) into ethanol (C 2 H 5 OH). Alcoholic fermentation converts one mole of glucose into two moles of ethanol and two moles of carbon dioxide, producing two moles of ATP in the process. C 6 H 12 O 6 + 2 ADP + 2 P i → 2 C 2 H 5 OH + 2 CO 2 + 2 ATP