Search results
Results from the WOW.Com Content Network
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.
For the angle α, the sine function gives the ratio of the length of the opposite side to the length of the hypotenuse.. To define the sine and cosine of an acute angle , start with a right triangle that contains an angle of measure ; in the accompanying figure, angle in a right triangle is the angle of interest.
Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths.
Let ABC be a triangle with side lengths a, b, and c, with a 2 + b 2 = c 2. Construct a second triangle with sides of length a and b containing a right angle. By the Pythagorean theorem, it follows that the hypotenuse of this triangle has length c = √ a 2 + b 2, the same as the hypotenuse of the first triangle.
An involute of a curve is the locus of a point on a piece of taut string as the string is either unwrapped from or wrapped around the curve. [1] The evolute of an involute is the original curve. It is generalized by the roulette family of curves. That is, the involutes of a curve are the roulettes of the curve generated by a straight line.
Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The line element ds may be expressed in terms of the coefficients of the first fundamental form as d s 2 = E d u 2 + 2 F d u d v + G d v 2 . {\displaystyle ds^{2}=E\,du^{2}+2F\,du\,dv+G\,dv^{2}\,.}
The Visvalingam–Whyatt algorithm, or simply the Visvalingam algorithm, is an algorithm that decimates a curve composed of line segments to a similar curve with fewer points, primarily for usage in cartographic generalisation.