Search results
Results from the WOW.Com Content Network
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...
Due to its appearance in this volume, the discriminant also appears in the functional equation of the Dedekind zeta function of K, and hence in the analytic class number formula, and the Brauer–Siegel theorem. The relative discriminant of K/L is the Artin conductor of the regular representation of the Galois group of K/L.
The discriminant of a polynomial is a function of its coefficients that is zero if and only if the polynomial has a multiple root, or, if it is divisible by the square of a non-constant polynomial. In other words, the discriminant is nonzero if and only if the polynomial is square-free.
The quartic is the highest order polynomial equation that can be ... and thus is a biquadratic equation, ... This can be done by letting the discriminant of the ...
Each coordinate of the intersection points of two conic sections is a solution of a quartic equation. The same is true for the intersection of a line and a torus.It follows that quartic equations often arise in computational geometry and all related fields such as computer graphics, computer-aided design, computer-aided manufacturing and optics.
In particular, it is a second-degree polynomial equation, since the greatest power is two. ... Figure 3. Discriminant signs. In the quadratic formula, ...
Its square is widely called the discriminant, though some sources call the Vandermonde polynomial itself the discriminant. The discriminant (the square of the Vandermonde polynomial: Δ = V n 2 {\displaystyle \Delta =V_{n}^{2}} ) does not depend on the order of terms, as ( − 1 ) 2 = 1 {\displaystyle (-1)^{2}=1} , and is thus an invariant of ...
In mathematics, the nth cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial with integer coefficients that is a divisor of and is not a divisor of for any k < n. Its roots are all n th primitive roots of unity e 2 i π k n {\displaystyle e^{2i\pi {\frac {k}{n}}}} , where k runs over the positive integers less ...