Search results
Results from the WOW.Com Content Network
All 49 games were learned using the same network architecture and with minimal prior knowledge, outperforming competing methods on almost all the games and performing at a level comparable or superior to a professional human game tester. [15] Deep reinforcement learning reached another milestone in 2015 when AlphaGo, [16] a computer program ...
AlphaGo is a computer program that plays the board game Go. [1] It was developed by the London-based DeepMind Technologies, [2] an acquired subsidiary of Google.Subsequent versions of AlphaGo became increasingly powerful, including a version that competed under the name Master. [3]
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...
The deep learning model consisted of 2 ANN, a policy network to predict the probabilities of potential moves by opponents, and a value network to predict the win chance of a given state. The deep learning model allows the agent to explore potential game states more efficiently than a vanilla MCTS.
In a 2004 paper, a reinforcement learning algorithm was designed to encourage a physical Mindstorms robot to remain on a marked path. Because none of the robot's three allowed actions kept the robot motionless, the researcher expected the trained robot to move forward and follow the turns of the provided path.
AlphaZero is a generic reinforcement learning algorithm – originally devised for the game of go – that achieved superior results within a few hours, searching a thousand times fewer positions, given no domain knowledge except the rules."
Model-free RL algorithms can start from a blank policy candidate and achieve superhuman performance in many complex tasks, including Atari games, StarCraft and Go.Deep neural networks are responsible for recent artificial intelligence breakthroughs, and they can be combined with RL to create superhuman agents such as Google DeepMind's AlphaGo.
MuZero (MZ) is a combination of the high-performance planning of the AlphaZero (AZ) algorithm with approaches to model-free reinforcement learning. The combination allows for more efficient training in classical planning regimes, such as Go, while also handling domains with much more complex inputs at each stage, such as visual video games.