Search results
Results from the WOW.Com Content Network
The Concurrency Representation Theorem in the actor model provides a fairly general way to represent concurrent systems that are closed in the sense that they do not receive communications from outside. (Other concurrency systems, e.g., process calculi can be modeled in the actor model using a two-phase commit protocol. [13])
Many models of communication include the idea that a sender encodes a message and uses a channel to transmit it to a receiver. Noise may distort the message along the way. The receiver then decodes the message and gives some form of feedback. [1] Models of communication simplify or represent the process of communication.
In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. [1] It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels.
The consistency model defines rules for how operations on computer memory occur and how results are produced. One of the first consistency models was Leslie Lamport 's sequential consistency model. Sequential consistency is the property of a program that its execution produces the same results as a sequential program.
The source–message–channel–receiver model is a linear transmission model of communication. It is also referred to as the sender–message–channel–receiver model, the SMCR model, and Berlo's model. It was first published by David Berlo in his 1960 book The Process of Communication.
The process state is changed back to "waiting" when the process no longer needs to wait (in a blocked state). Once the process finishes execution, or is terminated by the operating system, it is no longer needed. The process is removed instantly or is moved to the "terminated" state. When removed, it just waits to be removed from main memory ...
Multimodal human-computer interaction involves natural communication with virtual and physical environments. It facilitates free and natural communication between users and automated systems, allowing flexible input (speech, handwriting, gestures) and output (speech synthesis, graphics). Multimodal fusion combines inputs from different ...
A task-parallel model focuses on processes, or threads of execution. These processes will often be behaviourally distinct, which emphasises the need for communication. Task parallelism is a natural way to express message-passing communication. In Flynn's taxonomy, task parallelism is usually classified as MIMD/MPMD or MISD.